STATISTIK DESKRIPTIF & REGRESI LINIER BERGANDA DENGAN SPSS

DYAH NIRMALA ARUM JANIE, S.E., M.Si.

ISBN: 978-602-9019-98-8 Semarang University Press

STATISTIK DESKRIPTIF & REGRESI LINIER BERGANDA DENGAN SPSS

DYAH NIRMALA ARUM JANIE, S.E., M.Si.

JURUSAN AKUNTANSI FAKULTAS EKONOMI UNIVERSITAS SEMARANG

Semarang

ISBN: 978-602-9019-98-8

Semarang University Press

Dyah Nirmala Arum Janie, S.E., M.Si.

STATISTIK DESKRIPTIF & REGRESI LINIER BERGANDA DENGAN SPSS

Editor: Dr. Hj. Ardiani Ika S., S.E., M.M., Akt. ISBN: 978-602-9019-98-8 © Semarang University Press v, 43 hal, 160 x 240 mm

Hak Cipta Dilindungi Undang-Undang Penerbit: Semarang University Press Semarang, April 2012

Diperbolehkan mengutip, memperbanyak dan menerjemahkan sebagian atau seluruh isi buku ini dengan ijin tertulis Penulis dan Penerbit.

KATA PENGANTAR

Dengan menyebut Nama Allah, Yang Maha Pengasih dan Maha Penyayang.

Salam sejahtera buat pembaca semua, semoga keselamatan dan rahmat Tuhan selalu terlimpah kepada para nabi dan juga kita semua. Aamiin.

Syukur Alhamdulillaah, penulis diberikan kekuatan hingga akhirnya dapat menyelesaikan penulisan buku kecil ini. Buku ini dimaksudkan untuk memberikan panduan singkat penggunaan SPSS sebagai alat untuk menghasilkan statistik deskriptif dan melakukan analisis regresi linier berganda. Terkait dengan regresi linier berganda, buku ini juga memuat cara melakukan uji asumsi klasik sederhana yang diperlukan. Pada akhir bagian buku dilengkapi dengan satu latihan sederhana.

Terima kasih penulis ucapkan kepada semua pihak yang secara langsung dan tidak langsung mendukung penulisan buku ini. Semoga semua itu menjadi amal ibadah kita di dunia dan akhirat. Aamiin.

Dengan segala keterbatasan penulisan yang tertuang di buku ini, semoga buku ini bermanfaat bagi para pembaca.

Semarang, April 2012

Penulis

DAFTAR ISI

KATA PENGANTAR	iii
DAFTAR ISI	v
BAB 1 PENDAHULUAN DAN ENTRI DATA	1
BAB 2 STATISTIK DESKRIPTIF	7
BAB 3 REGRESI LINIER BERGANDA	11
BAB 4 MULTIKOLINIERITAS	19
BAB 5 HETEROSKEDASTISITAS	24
BAB 6 AUTOKORELASI	30
BAB 7 NORMALITAS RESIDUAL	35
LATIHAN	39
REFERENSI	42
LAMPIRAN TABEL DURBIN WATSON 5%	43

BAB 1

PENDAHULUAN DAN ENTRI DATA

Program SPSS adalah salah satu program pengolahan statistik yang paling umum digunakan dalam penelitian yang menggunakan data kuantitatif atau data kualitatif yang dikuantitatifkan.

Setelah diinstal di komputer, program ini biasanya memiliki *shortcut* di desktop atau di *Windows taskbar*, dengan mengklik ikon *START* \rightarrow *PROGRAM FILES* \rightarrow SPSS Inc. \rightarrow SPSS16, maka akan terbuka tampilan berikut:

Selanjutnya klik *TYPE IN DATA* untuk memasukkan data baru, kemudian, klik *OK*, maka kita akan mendapatkan dua tampilan standar SPSS16, yaitu tampilan data (*DATA VIEW*) dan tampilan variabel (*VARIABLE VIEW*)

	Destat p	Debalanti - 521 dece Data D des rel	Denter #	14 14 15 16 16 16 16 16 16 16 16 16 16 16 16 16	() () () ()	Antys yr	dor 194						1 Cartella	
and and and and and and and and and 1					the second s		or 1 -					2	Vision E arto	Variable
	1	1.00	-	1.000	1.08	1.04	100	1.000	1.000	100	1000	100		100
	-	1												
		_												
		-												- 1
		-												- 1
	_													
- 19 - 19 - 18 -		-												- 1
	3.11													
	13	-												- 1
														- 1
1 10 1	1.12	-												- 1
	14	-												- 1
Alla I		-												- 1
4	1.1.1.1	-												
		410			-								-	1.
Data Mana University of the second	Data Maria	University Marin	-											

Tampilan *Data View* digunakan untuk memasukkan dan menyunting data. Cara menggunakan tampilan *Data View* ini agak mirip dengan MS Excel.

Overlagt.	[Debalatit]	SPII Date	tate .									0.00
De Est	Yere De	• Denis	rm . hours	te Gradu	USERS AD	oge gaar	1946					
品籍书	回告	19 2.1	単計 3	6 唱曲	目母目	1100						
	Harr		Турн	WEEN	Decimale	Label	Values	Mang	Columns	Align	Moassare	
												1
1.	1.0											
												-
Data view	Martable V	linit										
		115								SPSS freemon	or in reaction	1.1.1

Sedangkan *Variable View* digunakan untuk memasukkan informasi atribut variabel:

- 1. *Name*: nama variabel
- 2. *Type*: jenis variabel (numerik, tanggal, nominal, teks/string, dsb).
- 3. **Width**: lebar kolom dalam tampilan *data view*. Secara otomatis/*default* biasanya berisi 8 (delapan) karakter.
- 4. *Decimals*: jumlah digit di belakang koma.
- 5. *Label*: penjelasan lebih lanjut dari nama variabel, misalnya: dalam nama variabel berisi RESID, kemudian labelnya diisikan dengan RESPONDENT IDENTITY.
- 6. **Values**: nilai variabel, misalnya: 1= laki-laki, 0=perempuan
- 7. *Missing*: perlakuan untuk nilai yang kosong
- 8. **Columns**: lebar kolom
- 9. Align: rata kiri, rata kanan atau tengah.
- 10. *Measure*: ukuran variabel, yaitu skala, ordinal atau nominal.

Pengisian data dilakukan dengan melengkapi *variable view*. Variabel dan data yang akan diisikan adalah data rasio keuangan beberapa bank selama tiga tahun, sebagai berikut:

Mataci Pia	rkt.Rum Statistic	(Zhélintull) van	- SPIS Dete Ed	500						10-10-10-10-10-10-10-10-10-10-10-10-10-1	04.34
De Eu	your Date 1	ng, matan	elter Senter	Utility A	splike Abron Het						
10日日	D +++	加林街	A -86	日本日	100						
	Harre	Туря	WEER	Decimale	Label.	Values	Masing	Edams	Align	Meanan	
1	EAMPED	Manaric	.6	2	Sample Northly	None	Plora	8	温向如	/ Scala	12
2	CAR	Numeric	.8	2	Capital Assets Rate	None	Flore	11	増 Right	# Scale	
3	NPL	Nameric	8	2	Non Performing Loan	None	None	8	港Right	# Stale	
4	RÓA	Menanic	8	2.	Return On Assets	None	None	8	TE Flight	/ Scala	
6	ROE	Nameric	.8	2	Return On Equity	Norm	Nora	8	温 fàght	# Scale	
6	OCOR .	Numeric		7	Cost Efficiency	Tione	None	8	港Rght	# Scale	
. 7	LDR	Numeric	8	2	Lown to Deposit Ratio	None	None	8	毒 Right	# Scala	
-											
											- 11
1.	1										-
Data view	Martable View										TANK STR

Name	Туре	Width	Decimals	Label	Columns	Align	Measure
SAMPID	Numeric	8	2	Sample Identity	8	Right	Scale
CAR	Numeric	8	2	Capital Asset Ratio	8	Right	Scale
NPL	Numeric	8	2	Non Performing Loan	8	Right	Scale
ROA	Numeric	8	2	Return On Asset	8	Right	Scale
ROE	Numeric	8	2	Return On Equity	8	Right	Scale
OCOR	Numeric	8	2	Cost Efficiency	8	Right	Scale
LDR	Numeric	8	2	Loan to Deposit Ratio	8	Right	Scale

Selanjutnya pengisian data dilakukan dengan menggunakan tampilan *Data View* sehingga tampak sebagai berikut:

日日	1900 Date 1	2. 14 117 4	04 (1968) 10 (19 (19 (19 (19 (19 (19 (19 (19 (19 (19	uniter Antiger	- Updare	Be						
SHEE	1										Without 7 a	17 Venider
1	SAMPD	CAP.	NPL	1904	ROE	900R	LDR.	10.1	-	r kali	1.10	18.5
5	10	11.22	\$.05	2,41	24.29	82.09	102.07					
2.	2.00	14.85	2.74	3.36	21.15	.77.68	90.51					
3	3.00	10.83	- 3.45	2.60	39.14	78.94	104.41					
4.0	4.00	12.68	4.16	3 03 E	29.72	84.52	107.001					
5.1	5.00	9.67	4.44	2.77	34.37	78.05	102.94					
6	6.00	10.89	2.57	2.2/	29.24	82.75	98.16					
7	7.00	11.45	2.84	3.04	37.49	75.76	95.73					
8	8.00	1 12.10	5.63	2.76	42.13	75.10	38.44					
	9.00	11.25	4.98	2.62	30.21	78.73	106.39					
10	10.00	18.14	1.61	3.15	32.00	68.00	81.76					
. 11	11.00	11.30	3.62	0.45	8.83	95.50	96.82					
12	12.00	F 11.16	3.15	1.83	25.74	105.33	10.27					
13	13.00	10.82	7.80	0.53	8.49	.95.71	92,93					
14	14.00	11.58	154	5.59	61.84	67.78	93.68					
16	15.00	9.32	1.95	5.43	81.63	70.19	107.15					
植	16.00	10.72	9.13	5.37	60.70	69.64	36.03					
17	17.00	11.45	1.12	1.58	25.32	86.59	95.20					
18	19.00	12.91	0.77	636	57.99	67.84	36.08					
10	410 10.0	17.5%	12.981	47	47.81	71.42	10.71					
Data View	Variable View	-						_				

Data yang diisikan:

SAMPID	CAR	NPL	ROA	ROE	OCOR	LDR
1.00	11.23	6.05	2.41	24.29	82.09	102.87
2.00	14.85	2.74	3.26	31.15	77.69	90.51
3.00	12.66	4.58	1.83	46.21	78.71	89.12
4.00	10.83	3.45	2.60	33.14	78.94	104.41
5.00	12.66	4.14	3.03	29.72	84.52	97.06
6.00	12.43	4.73	1.53	32.22	81.34	92.98

SAMPID	CAR	NPL	ROA	ROE	OCOR	LDR
7.00	9.57	4.44	2.77	34.37	78.05	102.94
8.00	10.69	2.57	2.27	23.24	82.75	99.16
9.00	11.46	2.84	3.04	37.49	75.76	95.73
10.00	12.10	5.63	2.76	42.13	78.10	98.44
11.00	11.25	4.58	2.62	33.21	78.73	106.39
12.00	18.14	1.61	3.15	32.00	68.02	81.76
13.00	11.10	3.62	0.45	8.03	95.50	85.82
14.00	17.56	0.90	4.25	43.45	71.56	90.26
15.00	11.16	3.13	1.83	28.74	86.33	90.27
16.00	10.82	7.80	0.53	8.49	95.71	92.93
17.00	11.58	1.54	5.59	61.84	67.78	93.68
18.00	9.32	1.95	5.43	89.83	70.19	97.15
19.00	10.72	1.13	5.37	60.70	69.64	98.83
20.00	11.45	1.12	1.56	25.32	86.59	85.20
21.00	12.91	0.77	5.36	57.99	67.84	86.08
22.00	12.04	1.40	0.62	9.72	93.66	90.23
23.00	15.51	1.38	2.14	22.45	75.66	81.16
24.00	13.48	1.12	0.98	11.06	89.03	79.58
25.00	10.96	1.70	2.22	39.97	84.42	81.39
26.00	12.03	4.51	2.05	51.61	78.01	91.05
27.00	11.06	1.29	2.08	35.11	85.10	82.25
28.00	13.71	6.00	1.65	32.96	80.96	94.23
29.00	16.50	6.12	2.03	39.25	84.33	87.32
30.00	14.80	6.71	1.75	34.49	79.56	95.64
31.00	12.28	4.14	1.94	51.35	77.89	89.21
32.00	13.30	4.86	2.11	40.17	74.05	87.93
33.00	14.73	4.59	2.08	38.77	72.05	86.85
34.00	11.54	4.39	1.91	48.78	78.13	99.11
35.00	12.39	3.86	2.23	44.20	73.76	83.07
36.00	14.00	4.21	2.00	38.21	73.88	87.03

Di sela-sela atau setelah selesai mengentri data, selalu selalu simpan data dan beri nama *file* (misalnya: <u>kinerjabank.sav</u>) dengan mengklik gambar disket, atau klik menu *FILE* \rightarrow *SAVE* atau ketik Ctrl S atau ketik Alt F + S, seperti penggunaan MS Office. *File* data ini akan memiliki ekstensi <u>.sav</u>.

Untuk keluar dari SPSS16, bisa mengklik gambar silang \blacksquare yang ada di pojok kanan atas, atau klik menu *FILE* \rightarrow *EXIT*

BAB 2 STATISTIK DESKRIPTIF

Buka kembali SPSS dengan langkah-langkah yang sudah pernah disampaikan sebelumnya. Akan tetapi kali ini pilih *OPEN EXISTING DATA SOURCE* dan pilih *More Files...* atau jika sudah ada nama *file* yang dimaksud (misalnya: <u>kinerjabank.sav</u>), bisa langsung dipilih untuk kemudian pilih OK. Tampilkan kembali *file* data rasio keuangan sejumlah bank selama tiga tahun. Kali ini akan didapati satu aplikasi lagi yang bernama **SPSS Output Viewer**, di samping **SPSS Data Editor** yang sudah dikenal sebelumnya.

Berikut ini adalah langkah-langkah untuk menghasilkan statistik deskriptif:

1. Klik ANALYZE \rightarrow DESCRIPTIVE STATISTIC \rightarrow DESCRIPTIVES...

1 that and Po	aldition (Hadatilian)	Andrianij - 1940 Dan Aniho							Jenis	-
te 64 :	line the last	on grate grate there	Assign States 10							
-84	10 4 1 2	He Pagots	 個品版 							
STINE	315	Dyscripter Making	1 III Engewoon	1					1000-001	Vision Inc.
1.000	DAMPD	CAL THEM	+ No groupper.	04	118	-	-	T and t	T	1.1.1.1.1
111	1.00	Cegarileen	+ A Dates	82.09	102.67					
2	2.00	General Linear Model	+ CR Growner	77.60	90.01					
3	100	Generalpid Linke reset:	* 54 (bao.)	20.71	09.12					- 18
4	4.00	MyAd Malatte	· Perma	70.54	104.01					- 18
1.5	5.00	Ornelaty	+ 7 Q.0.144	84.52	97.06					
. 6	8.00	Timpureses.	* 37.72	87.34	92.96					11
3	7.00	Lighter.	* 32	78.05	102.54					- 11
	8.00	191210198252943	* 1128	1275	99.1E					- 11
	9.00	Chelley	1 27.43	75.76	9673					- 11
10	10.00	Deter Restantions	+ 42.13	29.00	98.44					- 11
11	11.00	Set.	* 327	78.73	105.78					- 11
12	12.00	(Any Annual Insta	1 10 10	88.02	01.78					- 11
- 11	13.00	Text-barms	1 800	10.00	(81.02					- 11
14	14.00	Derived .	1 42.45	71.56	90.26					- 11
16	16.00	Theory Value Analysis	28.24	89.33	90.27					- 11
10	16.00	Hypele Theoreman	* 5.43	95.71	92.95					- 11
D.	17.00	Control Surgery	 E124 	87.75	20.08					- 11
- 16	18.00	Speaky Cookier	1 10 10	70.19	97-1E					- 11
- 194	19.00	C NOT TANK	66.20	89.64	98.65			-		
	A.C.	Arros 18								
Sala Maner	Mandate Vision									
(woode to							3765 Pr	DODDER IN FRAME	4	

2. Muncul kotak dialog *DESCRIPTIVES*. Kemudian sorot semua variabel kecuali SAMPID yang terdapat di kotak sebelah kiri dan pindahkan ke kotak sebelah kanan dengan mengklik panah yang terdapat di antara kotak sebelah kiri dan kotak sebelah kanan hingga tampil seperti ini:

Sample Identity [SAMPID]	Variable(s): ✓ Capital Assets Ratio [C ✓ Non Performing Loan [N ✓ Return On Assets [RO/ ✓ Return On Equity [ROE] ✓ Cost Efficiency [OCOR] ✓ Loan to Deposit Ratio [L	
]Save standardi <u>z</u> ed values as v	rariables	Help

3. Kemudian klik *OPTIONS*... hingga muncul kotak dialog *DESCRIPTIVES: OPTIONS*, kemudian beri tanda ✓ pada

kotak *MEAN*, *STD. DEVIATION*, *VARIANCE*, *RANGE*, *MINIMUM*, *MAXIMUM*, *S.E. MEAN* dan biarkan lainnya pada kondisi standar/*default* lalu klik *CONTINUE* \rightarrow *OK*.

Descriptives: Opt	tions	×
💽 <u>M</u> ean	<u>S</u> um	
Dispersion		
💽 St̪d. deviation	🛃 Mi <u>n</u> imum	
⊘ ⊻ariance	✓ Maximum	
✓ <u>R</u> ange	✓ S. <u>E</u> . mean	
Distribution		
<u>K</u> urtosis	Ske <u>w</u> ness	
Display Order—		
O Variable list		
<u>A</u> lphabetic		
O Ascending mea	ans	
O Descending me	ans	
Continue	Cancel	Help

4. Diperoleh tampilan sebagai berikut di SPSS *Output Viewer*:

			Descrip	the Statistics	£			S
	N	Range	Minimum	Naximum	- N	eian	Std. Deviation	Variance
	Statistic	Statistic	Statistic	Statistic	Etatistic	Btd. Error	Statistic	Statistic
Capital Assets Ratio	36	8.82	9.32	18.14	12.5783	34539	2.07224	4.295
Non Performing Loan	36	7.0.3	77	7.00	3,4889	31372	1.88233	3.543
Return On Assets	38	5.14	.45	5.59	2.4842	21723	1.30338	1.699
Return On Equity	36	81.00	0.03	68.68	36,7128	2,70694	16.24163	263.791
CostEfficiency	36	27.93	67.78	95.71	79.3425	1.22120	7.32720	53.688
Loan to Deposit Ratio	36	26.81	79.58	106.39	91.6011	118642	711852	50.673
Valid N (Estwise)	36	51212.01	1.11111111	01.00100	n and a second	100000000	1.200.000.000	a constant.

Jumlah data yang diolah semuanya adalah 36 yang ditunjukkan dari nilai N. Kolom *Range* menunjukkan kisaran/*range* dari masing-masing variabel. Kolom minimum menunjukkan nilai minimum dari masing-masing variabel dan

kolom *maximum* menunjukkan nilai maksimumnya. *Mean statistic* adalah rata-rata dan *standard error* masing-masing variabel. *Std. Deviation* menunjukkan simpangan baku dari masing-masing variabel dan *variance* menunjukkan variannya.

BAB 3

REGRESI LINIER BERGANDA

Dengan menggunakan data yang terdapat pada bagian sebelumnya, yaitu data rasio keuangan beberapa bank selama tiga tahun, model yang ingin diuji secara empiris adalah bagaimana pengaruh faktor-faktor berikut ini:

- 1. Struktur permodalan (yang diproksikan oleh *Capital Assets Ratio*),
- 2. Kualitas aset produktif (yang diproksikan oleh Non *Performing Loan*),
- 3. Rentabilitas (yang diproksikan oleh Return on Equity),
- 4. Efisiensi biaya (yang diproksikan oleh rasio *Operating Cost* & *Operating Revenue*), dan
- 5. Likuiditas (yang diproksikan oleh Loan to Deposit Ratio)

terhadap Kinerja Keuangan perbankan yang diproksikan oleh *Return on Asset.*

Adapun kerangka penelitiannya apabila digambarkan maka akan tampak sebagai berikut:

Sedangkan hipotesis yang dibangun adalah sebagai berikut:

- H₁ : Diduga struktur permodalan berpengaruh signifikan terhadap kinerja keuangan.
- H₂ : Diduga kualitas aset produktif berpengaruh signifikan terhadap kinerja keuangan.
- H₃ : Diduga rentabilitas berpengaruh signifikan terhadap kinerja keuangan.
- H₄ : Diduga efisiensi biaya berpengaruh signifikan terhadap kinerja keuangan.
- H₅ : Diduga likuiditas berpengaruh signifikan terhadap kinerja keuangan.

Data kasus di atas dapat diolah dengan menggunakan analisis regresi linier berganda yang terdapat dalam program perangkat lunak SPSS16. Regresi linier berganda dimaksudkan untuk menguji pengaruh dua atau lebih variable independen (*explanatory*) terhadap satu variable dependen. Model ini mengasumsikan adanya hubungan satu garis lurus/linier antara variabel dependen dengan masing-masing prediktornya. Hubungan ini biasanya disampaikan dalam rumus. Sedangkan untuk kasus di atas, rumus yang terbentuk adalah:

$$Y = \alpha + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4 + \beta_5 X_5 + \varepsilon_i$$

Di mana:

Y		=	Kinerja keuangan / ROA sebagai variabel lependen
α		=	Konstanta
β_1	-	=	Koefisien regresi variabel independen
β_5			
X_1		=	Struktur permodalan / CAR sebagai variabel
			ndependen
X_2		=	Kualitas aset produktif / NPL sebagai variabel
_			ndependen
X_3		=	Rentabilitas / ROE sebagai variabel independen
X_4		=	Efisiensi biava / OCOR sebagai variabel independen
X_		=	ikuiditas / LDR sebagai variabel independen
123			interiore and a second and as second and a

Untuk tujuan pengujian hipotesis nilai parameter model, model regresi linier juga mengasumsikan hal-hal sebagai berikut yang dikenal dengan nama Uji Asumsi Klasik:

- 1. Normalitas
- 2. Heteroskedastisitas
- 3. Multikolinieritas
- 4. Autokorelasi (jika menggunakan data time series)

Langkah Analisis

- 1. Buka file data yang sudah dientrikan pada bagian sebelumnya (misalnya: <u>kinerjabank.sav</u>)
- 2. Dari menu utama SPSS, pilih menu Analyze \rightarrow Regression \rightarrow Linear hingga tampak sebagai berikut:

- 福島	前 电波 盖爾	Pagots	· (6 à fb					
- SAMPE:	110 Que	Opcişiler Battan	•		1.1			Hates 2 of 7 Veneters
1000	EALENO CA	THE	* RDC.	.000R	UR:	100	 	1
1.1	1.00	Cegarilleen	* 24.29	82.09	102.67			15
2	2.00	General Linear Model	* 31.16	77.60	90.51			
- 3	100	Generalized Linker results:	46.21	20.71	09.12			
4	4.00	Mg41Mint	10.14	70.54	104.41			
15	5.00	Orneldy	• 28.73	84.47	97.06			
. 6	8.00	Character	 A tree. 		92.96			
3	7.00	Loginew	 Constance 		102.94			
10	8.00	TRAJ M TRADE IN A	 A meanage 	10010	33.16			
	9.00	Delet	. A marriagen		9673			
10	10.00	Deter Resident	* E thereasting	inter	98.44			
11	11.00	Set	* S. Crabel		105.78			
11	12.00	(gerycoronale) Tanta	. B. Gast		01.78			
111	10.00	Text be as			(81.02			
14	14.00	Dered	. A gownee		90.26			
100	16.00	Bitserap Value Analysis	W. Defit transf		90.27			
NE .	16.00	Highly Theorem	· A 20mm Loool	Lavers	92.93			
et .	17.00	Contro Sample	 Gardnar Scolm 		20.68			
1.16	18.00	Spatally Contents	• 100 103	70.19	97.16			
- 194	19.0B	C NOT TANK	66.20	69.64	28.85		 _	
	302	Arros 18						

3. Setelah muncul kotak dialog *Linear Regression*, pada kotak *Dependent* isikan variabel ROA dan pada kotak *Independent(s)* isikan dengan variabel CAR, NPL, ROE, OCOR & LDR. Pada kota *Method* pilih *Enter* abaikan yang lain dan tekan *OK*.

🔁 Linear Regression		X
Sample Identity [SAMPID] Capital Assets Ratio [C Ron Performing Loan [N Return On Equity [ROE] Cost Efficiency [OCOR] Loan to Deposit Ratio [L	Dependent:	Statistics Plots Save Options
ОК	Selection Variable: Rule Case Labels: WLS Weight: WLS Weight: Help	

4. Maka akan muncul di SPSS Output Viewer tampilan seperti ini:

🕈 - Ordunt (Dalamenti) - 1915 Val	4							bridle and
to be per the perton	1000 F	and global t	Paper (Pres-	Anter	Dione ibe			
And And And Regression 	Regn	ession Sector En Mitt Variables Dr	DI PRACTOR	Whi Not ec i	Positi Liva	Rhan Lat Jk. pav		3
AND	Note	Variables Graned	Venables Decoded	Married	1			
- Carronyada Chantera		Loss to Deposit Plato, Cost Plateria, Hos Partorway Loss, Castel Annels Plato, fintern On Feader	-	Enjay				
	8.8	E tegunthid yarab Iepombot Yunida	kay orderleg i Rightett On Ass Mastel	inta Sammary*				
	Mode	R 15		ataci R j	ter Einigenste In Einigenste	Dutin Habot		
	1	. 912-	alt Louis Con	.681	87087	1,085		
	Los 6, D	n, Castal Assolution Reported Vision	Table, Patere Or Polisie Or Air	e Ewste e Ewste	training of the	or weating		
							SPSE Processes in made	HILWITTH

Untuk sementara, kita abaikan terlebih dahulu uji asumsi klasik. Misalkan hasil regresi ini sudah lolos uji asumsi klasik, maka cara interpretasi model regresi dengan langkah sebagai berikut: **pertama** interpretasikan koefisien determinasi, **kedua** uji F statistik dan **ketiga** uji regresi parsial dengan uji t.

Koefisien Determinasi

Model Summary^b

Mode I	R	R Square	Adjusted R Square	Std. Error of the Estimate	Durbin- Watson
1	.912ª	.831	.803	.57897	1.905

a. Predictors: (Constant), Loan to Deposit Ratio, Cost Efficiency, Non Performing Loan, Capital Assets Ratio, Return On Equity

b. Dependent Variable: Return On Assets

Tampilan luaran SPSS model summary menunjukkan besarnya adjusted R^2 sebesar 0,803, hal ini berarti 80,3% variasi kinerja keuangan (ROA) dapat dijelaskan oleh variasi dari lima variabel independen CAR, NPL, ROE, OCOR & LDR. Sedangkan sisanya (100%-80,3%=19,7%) dijelaskan oleh sebab-sebab yang lain di luar odel. Standard error of estimate (SEE) sebesar 0,57897, makin kecil nilai SEE akan membuat model regresi semakin tepat dalam memprediksi variabel dependen.

Uji Signifikansi Simultan (Uji Statistik F)

Mode	el	Sum of Squares	df	Mean Square	F	Sig.
1	Regression	49.402	5	9.880	29.475	=000.
	Residual	10.056	30	.335	661753 % (61700 %	
	Total	59.458	35			

ANOVA^b

a. Predictors: (Constant), Loan to Deposit Ratio, Cost Efficiency, Non Performing Loan, Capital Assets Ratio, Return On Equity

b. Dependent Variable: Return On Assets

Berdasarkan tabel ANOVA atau F test, diperoleh nilai F hitung sebesar 29,475 dengan probabilitas 0,000. Oleh karena probabilitas jauh lebih kecil dari 0,05, maka dapat disimpulkan bahwa koefisien regresi CAR, NPL, ROE, OCOR & LDR tidak sama dengan nol, atau kelima variabel independen secara simultan berpengaruh terhadap kinerja keuangan. Hal ini juga berarti nilai koefisien determinasi R² tidak sama dengan nol, atau signifikan.

Uji Signifikansi Parameter Individual (Uji Statistik t)

Untuk menginterpretasikan koefisien parameter variabel independen dapat menggunakan *unstandardized coefficients* maupun *standardized coefficients*.

		Co	efficients"			
et.		Unstandardize	d Coefficients	Standardized Coefficients		
Mode	el	В	Std. Error	Beta	t	Siq.
1	(Constant)	547	4.171		131	.897
	Capital Assets Ratio	.069	.072	.109	.962	.344
	Non Performing Loan	298	.063	431	-4.704	.000
	Return On Equity	.034	.011	.427	3.094	.004
	Cost Efficiency	052	.028	293	-1.894	.068
	Loan to Deposit Ratio	.066	.019	.363	3.498	.001

a. Dependent Variable: Return On Assets

Unstandardized Beta Coefficients

Dari kelima variabel independen yang dimasukkan dalam model ternyata hanya tiga variabel (NPL, ROE, LDR) yang signifikan pada α =5%, hal ini terlihat dari probabilitas

signifikansi ketiganya jauh dibawah 0,05. Satu variabel independen (OCOR) berpengaruh signifikan pada α =10% yang terlihat dari probabilitas signifikansi di bawah 0,10, yaitu sebesar 0,068. Jadi dapat disimpulkan bahwa variabel kinerja keuangan (ROA) dipengaruhi oleh CAR, NPL, ROE, OCOR & LDR, dengan persamaan matematis sebagai berikut:

 $ROA = -0,547 + 0,69CAR - 0,298NPL + 0,034ROE - 0,052OCOR + 0,066LDR + \varepsilon$

- Koefisien konstanta bernilai negatif menyatakan bahwa dengan mengasumsikan ketiadaan variabel CAR, NPL, ROE, OCOR & LDR, maka kinerja keuangan cenderung mengalami penurunan.
- Koefisien regresi CAR bernilai positif menyatakan bahwa dengan mengasumsikan ketiadaan variabel independen lainnya, maka apabila CAR mengalami peningkatan, maka ROA cenderung mengalami peningkatan,
- Koefisien regresi NPL bernilai negatif menyatakan bahwa dengan mengasumsikan ketiadaan variabel independen lainnya, maka apabila NPL mengalami peningkatan, maka ROA cenderung mengalami penurunan.
- Koefisien regresi ROE bernilai positif menyatakan bahwa dengan mengasumsikan ketiadaan variabel independen lainnya, maka apabila ROE mengalami peningkatan, maka ROA cenderung mengalami peningkatan,
- Koefisien regresi OCOR bernilai negatif menyatakan bahwa dengan mengasumsikan ketiadaan variabel independen lainnya, maka apabila OCOR mengalami peningkatan, maka ROA cenderung mengalami penurunan,
- Koefisien regresi LDR bernilai positif menyatakan bahwa dengan mengasumsikan ketiadaan variabel independen lainnya, maka apabila LDR mengalami

peningkatan, maka ROA cenderung mengalami peningkatan,

Apabila digunakan dalam ilmu pasti, maka semua angka yang tertera dalam persamaan matematis dapat diinterpretasikan lebih mendalam. Akan tetapi karena dalam kasus ini termasuk dalam ilmu sosial / ekonomi, maka yang perlu dititikberatkan adalah tanda positif atau negatif yang terdapat di depan angka koefisien beta.

Standardized Beta Coefficients.

Apabila masing-masing koefisien variabel independen kita standarisasi terlebih dahulu, maka kita akan mempunyai garis regresi yang melewati origin (titik pusat), sehingga persamaan regresi tidak memiliki konstanta (lihat tampilan *standardized coefficient*) atau secara matematis dapat dituliskan sebagai berikut:

$$ROA = 0,109CAR - 0,431NPL + 0,427ROE - 0,293OCOR + 0,363LDR + \varepsilon$$

Keuntungan dengan menggunakan standardized beta adalah mampu mengeliminasi perbedaan unit ukuran pada variabel independen. Jika ukuran variabel independen tidak sama (misalkan: Rupiah, Dollar, Jam, Hari, Rasio, dlsb) dan kita ingin membandingkan kontribusi antar variabel independen, maka sebaiknya interpretasi persamaan regresi menggunakan standardized beta, Namun demikian ada dua hal yang perlu mendapat perhatian jika menggunakan standardized beta: **pertama**, koefisien beta digunakan untuk melihat pentingnya masing-masing variabel independen secara relatif dan tidak ada multikolinieritas antar variabel independen. **Kedua**, nilai koefisien beta hanya dapat diinterpretasikan dalam konteks variabel lain dalam persamaan regresi.

BAB 4 MULTIKOLINIERITAS

Uji multikolinieritas bertujuan untuk menguji apakah dalam model regresi ditemukan adanya korelasi yang tinggi atau sempurna antar variabel independen. Jika antar variabel independen terjadi multikolinieritas sempurna, maka koefisien regresi variabel independen tidak dapat ditentukan dan nilai *standard error* menjadi tak terhingga. Jika multikolinieritas antar variabel independen tinggi, maka koefisien regresi variabel independen tinggi, maka koefisien regresi variabel independen dapat ditentukan, tetapi memliki nilai *standard error* tinggi berarti nilai koefisien regresi tidak dapat diestimasi dengan tepat.

Untuk memberikan gambaran cara mendeteksi multikolinieritas dengan SPSS16, digunakan model persamaan regresi berikut:

 $ROA = \alpha + \beta_1 CAR + \beta_2 NPL + \beta_3 ROE + \beta_4 OCOR + \beta_5 LDR + \varepsilon$

Langkah Analisis

- 1. Buka file kinerjabank.sav
- 2. Dari menu utama SPSS, pilih menu Analyze \rightarrow Regression \rightarrow Linear hingga tampak sebagai berikut:

- 副白	10 mar 1.44	Pagots	640				
- GAMPET	110 C.4	Oprovide Matters					Value 7 of 7 Valuetor
1 2 3	100 200 300	Gegannikeen Gerannigeer Mool Geranniger Univer House	94 29 31.11 46.25	0008 82.09 77.60 76.71	102.07 90.97 90.97		 1
5	4.00 5.00 8.00	Ornelate	8.00 8.00	44.57	97.06 92.96		
3	7.00 8.00	Loginaw New Weighters	B means		102.94 932.16		
9 10 11	9.00 10.00 11.00 12.00	Decely Gele Restantion Single Broppersonality Texts	A mayingsh & they inget & they at the & they at		96.73 98.44 105.39 91.78		
H H H	13.00 14.00 16.00	Text Source Serviced Interry Value Analysis Multiple Textmens	A grant . A grant total . A stingt i rest	Laurry .	00.00 90.26 90.27		
0	17.00	Consectionale Sparty Conserv	Quese Scotts	1. 11 - 12	10.00 07.45		
. 19	19.08	ENC Say	66.20	89.64	98.65	 _	

3. Setelah muncul kotak dialog *Linear Regression*, pada kotak *Dependent* isikan variabel ROA dan pada kotak *Independent(s)* isikan dengan variabel CAR, NPL, ROE, OCOR & LDR. Pada kota *Method* pilih *Enter*, kemudian pilih *Statistics*.

🚰 Linear Regression		×
Sample Identity [SAMPID] Capital Assets Ratio [C Non Performing Loan [N Return On Equity [ROE] Cost Efficiency [OCOR] Loan to Deposit Ratio [L OK	Dependent: Return On Assets [ROA] Block 1 of 1 Preyjous Independent(s): Capital Assets Ratio [CAR] Capital Assets Ratio [CAR] Return On Equity [ROE] Method: Enter Selection Variable: Case Labels: WLS Weight: Selection Explore	Statistics Plots Save Options

4. Setelah muncul kotak dialog Linear Regression: Statistics, pilih Estimates (untuk meminta koefisien regresi), Covariance matrix (untuk meminta matriks korelasi antar variabel independen), Model fit (untuk meminta koefisien determinasi R²), Part and partial correlations (untuk meminta korelasi parsial dan zero order correlation), dan Collinearity diagnostics (untuk meminta nilai Tolerance & VIF). Klik Continue, kemudian OK.

🚰 Linear Regression: Statist	ics 🛛 📉
Regression Coefficient Estimates Confidence intervals	✓ Model fit R squared change Descriptives
✓ Covariance matrix	Part and partial correlations
Residuals	Collinearity diagnostics
Durbin-Watson	
Outliers outside: ○ <u>A</u> ll cases	3 standard deviations
Continue	ancel Help

5. Muncul tampilan output SPSS di SPSS Output Viewer.

Deteksi Multikolinieritas

			Model Summar	У
Mode	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.912ª	.831	.803	.57897

a. Predictors: (Constant), Loan to Deposit Ratio, Cost Efficiency, Non Performing Loan, Capital Assets Ratio, Return On Equity

 Terlihat dari luaran SPSS nilai R² cukup tinggi sebesar 83,1%, sedangkan kebanyakan variabel independen memiliki nilai t statistik yang signifikan pada a=5%. Oleh karena R² tinggi dan kebanyakan variabel independennya signifikan, maka tidak ada indikasi terjadi multikolinieritas antar variabel independen.

2012/01/2017/02/2017

	Connear Collegions.										
Mintel			Loan to Deposit Ratio	Cost	Non Performing Losin	Capital Assets Ratio	Return On Equity				
1	Correlations	Loan to Deposit Ratio	1.000	301	- 520	500	.206				
		CostEfficiency	.391	1.000	- 362	654	823				
		Non Performing Loan	- 528	- 362	1.000	- 362	- 766				
		Capital Assets Ratio	.586	654	- 362	1.000	.538				
		Return On Equity	.206	822	- 165	538	1.000				
	Covariances	Loan to Deposit Ratio	000	000	.000	.001	4.331E-5				
		CostEfficiency	.000	001	.000	001	000				
		Non Performing Lean-	500	000	.004	- 002	500				
		Capital Assets Rate	801	001	- 002	005	000				
		Return On Equity	4,331E-5	000	.800	800	.000				

a. Dependent Variable: Return On Assets

2. Berdasarkan pada tampilan matriks korelasi, pair-wise correlation antar variabel independen semuanya di bawah 0.80, kecuali antara variabel ROE dengan Cost efficiency yang korelasinya sedikit di atas 0,80. Jadi dapat disimpulkan bahwa terdapat multikolinieritas variabel ringan antara ROE dengan cost efficiency/OCOR.

22

_		instantantia	t Coolinette	Coefficients*			Contatulos			Collinguate Physical	
inter l			IDJ. Fride	finite.	14-11	114	Zaroomu	- Fattal	Eat	Tupping	. WE
	(Constant)	-347	4171		- 111	.997					
	Capital Accurs Patter	.000	472	1100	942	244	-1115	0.0235	672	400	10.000
	Non Performing Low:	- 298	362	431	4.734	:000	- 406	- 852	180	372	1.40
	Palain Dr. Equily		411	417	3 004	2004	747	492	330	300	1.524
	CastEfficiency	- 040	8.09	- 261	-1.004	200	- 102	- 332	-10	200	4.210
	Low to Depose Rate	.008	1819	310	1.000	301	281	100	263	125	1 100

3. Nilai R² keseluruhan model cukup tinggi, sebesar 83,1%, sedangkan nilai parsial korelasi berkisar masing-masing 0,173; -0,652; 0,492; -0,327; dan 0,538. Oleh karena nilai parsial korelasi juga tinggi, maka tidak ada indikasi terjadinya multikolinieritas.

Variatos Propr							Propertions	pedora			
Nite	Dirret Note	Damates	Condition	Costat	Capital Assalla Marta	Non Partorning Loat	Return On Equator	Coat	Loon to Description		
1		\$ 8027	1.0,00	10			.000	0.0	âı		
	2	226	4.990	40	10	43	406	0.0	.01		
	3	117	8.931	- 80	121	.70	18	00.	.01		
	4	025	14,925	.00	.38	63	0.0	.01			
	\$	054	37.024		.61	105	22	18	.41		
	8	000	119.254	1.00		21	.62				

4. Nilai CI antara 10-30 menuniukkan adanva multikolinieritas moderat sampai kuat dan CI di atas 30 terdapat multikolinieritas sangat kuat. Berdasarkan parameter tersebut, dari enam dimensi, tiga di antaranya memiliki nilai CI di bawah 10, yang berarti Kemudian terdapat multikolinieritas. tidak satu dimensi memiliki nilai antara 10-30 yang menunjukkan multikolinieritas moderat. Lalu dua dimensi memiliki nilai di atas 30, yang menunjukkan multikolinieritas kuat.

			Cost	fictuatio*						
	Unitaridad Bald CoolScients		Shandactioni . Confloreda			10	Collinearte Blatsitire			
Madel		Ibil Eribi	ENG.	1	114	Zaro-onter	Patial	Est.	Tuestie	WE
Y (Constant)	-587	4171		- 111	.897					
Capital Accurts Plater	-000	672	3104	942	364	-915	0.0285	1072	430	0.000
Nam Performing Lower		363	- 411	16,704	:000	- 406	- 852	180	372	1.40
Paten in: Equity	304	411	- 401	3.004	2004	747	492	300	.100	3.524
CastEfficiency	- 662	14.100	- 1940	11,004	360	- 740	- 332	-10	100	4.214
Low to Deposit Rate		1219	310	11.000	301	281	109	263	125	1 100

a. Organished Votisiale. Network: On Accests.

5. Akan tetapi, berdasarkan pada nilai *Tolerance* dan VIF terlihat bahwa tidak ada nilai Tolerance di bawah 0,10 begitupula dengan nilai VIF tidak ada yang di atas 10. Dengan menggunakan parameter ini, tidak terbukti adanya multikolinieritas yang serius.

Jika tujuan analisis regresi adalah prediksi atau peramalan, maka multikolinieritas bukanlah masalah serius, karena semakin tinggi nilai R² maka semakin baik kemampuan model tersebut dalam melakukan prediksi. Akan tetapi jika tujuan analisis regresi tidak hanya sekedar prediksi tetapi juga estimasi terhadap parameter, maka multikolinieritas menjadi masalah serius karena akan menghasilkan *standard error* yang besar sehingga estimasi parameter menjadi tidak akurat lagi.

BAB 5 HETEROSKEDASTISITAS

Asumsi klasik berikutnya dalam model regresi adalah homoskedastisitas atau memiliki varian yang sama.

Ada dua cara pendeteksian ada tidaknya heteroskedastisitas, yaitu dengan metode grafik dan metode statistik. Metode grafik biasanya dilakukan dengan melihat grafik plot antara nilai prediksi variabel dependen dengan residualnya. Sedangkan metode statistik dapat dilakukan dengan Uji Park, Uji Glejser, Uji White, Uji Spearman's Rank Correlation, Uji Goldfeld Quandt dan Uji Breusch-Pagan-Godfrey. Tapi yang akan dibahas di bagian ini hanya Metode Grafik dan Uji Glejser.

Metode Grafik

Langkah Analisis

- 1. Lakukan regresi dengan variabel dependen ROA dan variabel independen CAR, NPL, ROE, OCOR & LDR.
- Lanjutkan dengan menekan tombol *Plots* sehingga di layar tampak kotak dialog *Linear Regression Plots*. Masukkan variabel SRESID pada kotak Y dan variabel ZPRED pada kotak X, kemudian klik *Continue* dan OK.

Linear Regression: Plots	×
DEPENDNT	Scatter 1 of 1
*ZPRED *ZRESID *DRESID *ADJPRED *SRESID *SDRESID	Pre⊻jous Next ¥: *SRESID X: *ZPRED
Standardized Residual Plo	Dts Produce all partial plots
Continue	Cancel Help

3. Luaran yang nampak di SPSS Output Viewer adalah sebagai berikut:

Terlihat pada tampilan grafik *scatterplots* di atas bahwa titiktitik tidak menyebar secara acak baik di atas maupun di bawah angka 0 pada sumbu Y. Hal ini dapat disimpulkan bahwa terjadi heteroskedastisitas pada model regresi. Analisis

dengan grafik *plots* memiliki kelemahan yang cukup signifikan oleh karena jumlah pengamatan mempengaruhi hasil *plotting*. Semakin sedikit jumlah pengamatan, maka semakin sulit menginterpretasikan hasil grafik *plots*. Oleh sebab itu diperlukan uji statistik yang lebih dapat menjamin keakuratan hasil.

Uji Glejser

Uji Glejser dilakukan dengan meregresikan nilai *absolute* residual (AbsUi) terhadap variabel independen lainnya. Jika β signifikan, maka mengindikasikan terdapat heteroskedastisitas dalam model.

Langkah Analisis

- 1. Lakukan regresi dengan variabel dependen ROA dan variabel independen CAR, NPL, ROE, OCOR & LDR.
- 2. Dapatkan variabel residual dengan cara menekan tombol *Save* pada kotak dialog *Linear Regression* dan aktifkan *Unstandardized residuals*. Kemudian klik *Continue* dan OK

🔛 Linear Regression: Save	×				
Predicted Values	Residuals				
Unstandardized	☑ U <u>n</u> standardized				
Standa <u>r</u> dized	Standardized				
Adjusted	Studentized				
S.E. of mean predictions	Deleted				
	Studentized deleted				
Distances	Influence Statistics				
Ma <u>h</u> alanobis	DfBeta(s)				
Cook's	Standardized DfBeta(s)				
Leverage values	DfFit				
Prediction Intervals	Standardized DfFit				
Mean Individual	Co <u>v</u> ariance ratio				
Confidence Interval: 0%					
Coefficient statistics					
Create coefficient statistics					
Create a new dataset					
Dataset name:					
Write a new data file					
File					
Export model information to >	(ML file				
	Bro <u>w</u> se				
\checkmark Include the covariance matrix					
Continue	ncel Help				

3. Pada tampilan SPSS *Data Editor* akan menampilkan satu variabel baru bernama RES_1

64.3	Det . Det . 3.4	ratorio, device	gan 1	part datum	gate :						
B B	節 わかう	- 10 M	- 相合 1	10 II II	20						
SHAPE	1016 (A.						1.1			Water	A BER Verser
1000	L BANFID	CAR	195.	804	-RDC	.000R	UR:	- 883,9	100	-	
1.1	1.00	11.21	6.01	2.41	24.29	82.09	102.67	0.60323			
2	2.00	14.85	2.74	3.28	31.15	77.60	90.91	0.57314			
- 3	100	12.00	4.51	1.00	48.21	20.71	00.12	-0.52734			
4	4.00	10.03	3.45	2.00	33.14	70 SE	104.41	0.62440			
15	5.00	12.66	414	3.09	39.72	84.52	97.06	0.80133			
. 6	8.00	12.43	475	1.53	32.22	87.34	92.96	4.43728			
3	7.00	7.57	4.44	277	54.57	70.05	102.54	0.00000			
10	8.00	(1.69	2,67	2.27	20.28	40.75	99.16	-4.22108			
	9.00	11.45	3.94	3.04	37.49	75.76	9673	404615			
10	10.00	12.10	6.63	276	42.13	29.40	98.44	0.24369			
11	11.00	11.25	4.50	282	33.27	78.73	105.78	0.54397			
12	12.00	18.14	T.III.	3.15	32.00	88.02	01.78	-0.05218			
111	13.00	11.10	3.62	0.40	8.00	105.00	(81.02	0.21483			
14	14.00	17.66	0.90	4.35	43.45	71.66	90.26	8.10369			
HE -	16.00	11.18	3.55	1.89	28.74	86.33	90.27	0.06165			
1E	16.00	10.82	7.80	0.53	5.43	85.71	92.93	1.15418			
U.	17.00	11.20	1.58	6.68	61.04	87.75	20.68	0.99788			
16	18.00	3.32	1.95	6.40	100 101	70.19	97.16	1.0477			
- 194	19.08	t0.72	1.15	6.97	66.20	89.64	98.88	1.40229		_	
	310										

4. Absolutkan nilai RES_1 dengan memilih menu Transform → Compute Variable... hingga muncul kotak dialog Compute Variable. Pada kotak Target Variable diisikan nama variabel baru AbsUi. Lalu pada kotak Function group pilih All, lanjutkan dengan kotak Functions and Special Variables pilih Abs, lalu tekan tombol bergambar panah ke atas. Kemudian pada kotak variabel, pilih variabel Unstandardized Residual (RES_1), lalu tekan tombol bergambar panah ke kanan, hingga di kotak Numeric Expression diperoleh tampilan ABS(RES_1). Tekan OK

(arget Variable: Abd.)	•	Numer ABS(R	ic Expr ES_1)	ession						
Sample Identity (SAMPID) Capital Access Ratio (C	4								Frankrik and all	
Non Performing Lown (N		1	1	121	4	CA.I	-		Al	
Return On Assets (ROA)		1	1	1	-	-			Arthmetic	
Cost Efficiency [OCOR]			4=		4	5	6		CDF & Noncentral CDF	
Loan to Deposit Rate (L.		•			1	2	3		Current Date/Time	
Unstanderstand Residu		6	4	1	1		(iii)		Date Arithmetic	
		10	1.1		Lunio C	-	-	1	Euclident and Special Varia	ite:
		القرار	1.2	0	<u> </u>	Upere		7	\$Casenum	1
	ABS(N	ABS(numeror), Namero, Reharco the absolute value of numeror, which must be numeric.							SOnte SOuter1 S.Oate SSystem STate	
(g) (optional case selec	tion sond	Bion)						_	Abs Any Arsin Artan Citt Benouß	

5. Muncul variabel baru bernama AbsUi dalam SPSS *Data Editor*.

(n 6= 1	170 mark 1	Catorie Analysis	grant 1	Parts And an	gater :					
CANE:	110 C.		10.00							Matter Aut & Versela
	EAMPIO -	CAR	195	204	-906	0008	108	- 482 4	Ainth	
1.1	1.00	11.21	6.01	2.41	24.29	82.09	102.67	0.60323	Ditte	
2	2.00	14 25	2.74	3.28	31.15	77.60	90.91	0.57314	0.57	
3	100	12.00	4.51	1.03	48.21	20.71	09.12	-0.52734	0.53	
4	4.00	10.03	3.45	2.00	32.14	70.54	104.41	0.52440	D.62	
-5	5.00	12.66	414	9.09	35.22	84.52	97.06	0.80133	0.96	
. 6	8.00	12.43	475	1.53	32.22	87.34	92.96	4.40728	0.41	
3	7.00	2.57	4.44	277	54.57	78.05	102.94	0.00080	0.04	
	8.00	(1.69	2.67	2.27	20.28	12.75	99-1E	4.22108	0.20	
	9.00	11.45	3.94	304	37.49	75.76	9673	404815	0.05	
10	10.00	12.10	6.63	2.76	42.13	29.00	98.44	0.24369	0.24	
11	11.00	11.25	4.50	2.82	33.27	78.73	105.78	0.54297	0.34	
12	12.00	18.14	THE	3.15	12 00	88.02	01.78	-0.05218	DDE	
11	13.00	11.10	3.62	0.40	8.00	08.80	(81.00	0.21481	0.21	
14	14.00	17.66	0.90	4.35	43.45	71.68	90.26	8 10369	0.11	
10	16.00	11.18	3.51	189	28.74	86.33	90.22	0.06185	0.06	
NE.	16.00	10.82	7.82	0.53	5.47	85.71	92.95	1.15418	1.18	
U.	17.00	11.00	1.58	6.52	61.04	67.75	90.68	0.99788	0.09	
- 16	18.00	8.20	1.95	6.40	100 83	70.19	97.16	0.0477	0.05	
	19.08	19.72	1.15	6.32	60.20	89.64	98.65	1.40229	0.65	
	513									

6. Regresikan variabel AbsUI sebagai variabel dependen dan variabel CAR, NPL, ROE, OCOR & LDR sebagai variabel independen, sehingga diperoleh luaran di SPSS *Output Viewer* sebagai berikut:

Coefficients^a

Model		Unstandardize	d Coefficients	Standardized Coefficients		
		В	Std. Error	Beta	t	Siq.
1	(Constant)	-1.843	2.559		720	.477
	Capital Assets Ratio	.010	.044	.058	.217	.829
	Non Performing Loan	.016	.039	.088	.415	.681
	Return On Equity	.006	.007	.279	.868	.392
	Cost Efficiency	.014	.017	.293	.814	.422
	Loan to Deposit Ratio	.008	.012	.173	.718	.478

a. Dependent Variable: AbsUi

Hasil tampilan luaran SPSS dengan jelas menunjukkan variabel CAR, NPL, ROE, OCOR dan LDR memiliki nilai signifikansi 0,829; 0,681; 0,392; 0,422 dan 0,478 yang kesemuanya di atas 0,01. Berarti tidak terdapat heteroskedastisitas dalam model ini, dengan kata lain semua variabel independen yang terdapat dalam model ini memiliki sebaran varian yang sama / homogen.

BAB 6 AUTOKORELASI

Uji autokorelasi bertujuan menguji apakah dalam suatu model regresi linier terdapat korelasi antar kesalahan pengganggu (*residual*) pada periode t dengan kesalahan pada periode t-1 (sebelumnya). Jika terjadi korelasi, maka dinamakan terdapat permasalahan autokorelasi. Autokorelasi muncul karena observasi yang berurutan sepanjang waktu berkaitan satu sama lain. Masalah ini timbil karena *residual* (kesalahan pengganggu) tidak bebas dari satu amatan ke amatanyang lain. Hal ini sering ditermukan pada data runut waktu / *time series* karena "gangguan" pada seseorang individu/kelompok cenderung mempengaruhi "gangguan" pada individu/kelompok yang sama pada periode berikutnya.

Pada data *cross section* (silang waktu), masalah autokorelasi relatif jarang terjadi karena "gangguan" pada amatan yang berbeda berasal dari individu/kelompok yang berbeda. Model regresi yang baik adalah regresi yang bebas dari autokorelasi. Ada beberapa cara yang dapat digunakan untuk mendeteksi ada tidaknya autokorelasi.

Uji Durbin Watson

Salah satu cara yang umum digunakan untuk mendeteksi adanya autokorelasi dalam regresi linier berganda adalah dengan Uji Durbin Watson (DW). Suatu model regresi dinyatakan tidak terdapat permasalahan autokorelasi apabila:

$$d_u < d < 4 - d_u$$

Di mana:

d = Nilai Durbin Watson hitung
 d_u = Nilai batas atas/upper Durbin Watson tabel

Cara mendeteksi adanya autokorelasi:

Lakukan langkah analisis regresi linier berganda dengan variabel dependen ROA dan variabel independen CAR, NPL, ROE, OCOR dan LDR seperti contoh sebelumnya dan lanjutkan dengan menekan tombol *Statistics* sampai muncul kotak dialog *Linear Regression: Statistics*. Setelah itu beri tanda ✓ pada bagian *Residuals, Durbin-Watson*, seperti tampak berikut ini.

Linear Regression: Statist	tics 🛛 📉					
Regression Coefficient	<mark>.</mark> ✓ <u>M</u> odel fit					
✓ Estimates	R squared change					
Confidence intervals	Descriptives					
Co <u>v</u> ariance matrix	Part and partial correlations					
	Collinearity diagnostics					
Residuals	Residuals					
✓ Durbin-Watson						
<u>C</u> asewise diagnostics						
Outliers outside:	3 standard deviations					
◯ <u>A</u> ll cases						
Continue	Continue Cancel Help					

Tampilan luaran yang nampak SPSS Output Viewer:

Model Summary^b

Mode	R	R Square	Adjusted R Square	Std. Error of the Estimate	Durbin- Watson
1	.912=	.831	.803	.57897	1.905

a. Predictors: (Constant), Loan to Deposit Ratio, Cost Efficiency, Non Performing Loan, Capital Assets Ratio, Return On Equity

b. Dependent Variable: Return On Assets

Nilai D W_{hitung} sebesar 1,905 akan dibandingkan dengan nilai tabel dengan menggunakan derajat kepercayaan 5%, jumlah sampel 36 dan jumlah variabel independen 5, maka di tabel Durbin-Watson akan diperoleh nilai:

	k=	k=5					
n	dL	dU					
33	1.1270	1.8128					
34	1.1439	1.8076					
35	1.1601	1.8029					
36	1.1755	1.7987					
37	1.1901	1.7950					
38	1.2042	1.7916					
39	1.2176	1.7886					

Oleh karena nilai D W_{hitung} lebih besar daripada batas atas 1,7987 dan lebih kecil daripada 4-d_U=4-1,7987=2,2013, atau:

$$\begin{aligned} &d_u < d < 4 - d_u \\ &\Leftrightarrow 1,7987 < 1,905 < 4 - 17987 \\ &\Leftrightarrow \mathbf{1}, \mathbf{7987} < 1,905 < 2,2013 \end{aligned}$$

\therefore tidak terdapat autokorelasi positif dan negatif dalam model

Run Test

Run test sebagai bagian dari statistik non parametrik dapat pula digunakan untuk menguji apakah antar residual terdapat korelasi yang tinggi. Jika antar residual tidak terdapat hubungan korelasi, maka dikatakan bahwa residual adalah acak atau random. Run test digunakan untuk melihat apakah data residual terjadi secara random atau tidak (sistematis)

Langkah Analisis

 Dari menu utama SPSS, pilih Analyze → Nonparametric Tests → Runs... hingga tampak seperti berikut.

-84	10 mm 1.4	+ Pagots	+ (6 + 0)					
- SMPE	100 - 10 4	Opropher MARKA	•					Value Anti-Value
1000	EAMPIO	CAL THEM	* RDC.	.000R	UR:	- AUX, 1	Ainth	
1.1	1.00	Cegarrilleen	* 24.29	82.09	102.67	0.60323	Diele	
2	2.00	General Linear Model	* 31.35	77.60	90.91	0.57314	0.57	
- 3	100	Generalized Linker resolution	46.21	20.71	09.12	-0.52734	0.53	
4	4.00	MgAd Master.	* 30.14	70 SE	10.4.41	0.52440	0.62	
15	5.00	Orneldy	* 3972	84.52	97.06	0.80133	0.98	
. 6	8.00	There exert	* 30.22	87.34	92.90	4140728	0.41	
3	7.00	1,gpHew	1 92	78.05	102.54	0.00000	0.04	
10	8.00	10124198252943	* J124	42.75	31.92	-0.22108	0.20	
	9.00	Chelley	1 17.49	75.76	9673	4066	0.05	
10	10.00	Gale Residen	* 42.13	29.00	98.44	0.24399	0.24	
11.	11.00	State	*		105.78	4.5439	0.34	
12	12:00	the processing fields	* Xightase.		01.78	-0.05218	20.0	
111	13.00	Text barms	· · · · · ·		(81.02	0.31481	0.21	
14	14:00	Derest.	· minute		90.26	8:10369	0.11	
1.1	16.00	Billingings Value Available	LSmith L		90.27	0.06185	0.06	
. ME	16.00	Hypeter The service	· A interest	Seneini	92.93	1.15418	1.18	
0	17.00	Consectionme	* Withhand	lages.	20.68	0.99788	D.109	
16	18.00	Spicely Content	• A Installant	81	97.16	0.0477	0.05	
- 194	19.0B	C NOT TANK	III I Relative Juny	m) :	38.65	1.40229	0.66	
-	813	Arros 18						

 Muncul kotal dialog Run Test. Selanjutnya isikan variabel Unstandardized Residual (RES_1) pada kotak Test Variable List. Pada bagian Cut Point aktifkan Median. Abaikan lainnya, dan tekan OK

Runs Test		×
Sample Identity [SAMPID] Capital Assets Ratio [C Non Performing Loan [N Return On Assets [ROA] Return On Equity [ROE] Cost Efficiency [OCOR] Loan to Deposit Ratio [L AbsUi	Test Variable List:	Exact Options
Cut Point ✓ Median Mode □ Mean Qustom:		
OK Paste	<u>R</u> eset Cancel H	elp

3. Maka akan muncul luaran berikut dalam SPSS *Output Viewer*.

	Unstandardiz ed Residual
Test Valueª	07170
Cases ≺ Test Value	18
Cases ≻= Test Value	18
Total Cases	36
Number of Runs	18
Z	169
Asymp. Sig. (2-tailed)	.866

Hasil luaran SPSS menunjukkan nilai test -0,07170 dengan probabilitas 0,866 tidak signifikan yang berarti bahwa residual bersifat random atau tidak terjadi autokorelasi antar nilai residual.

BAB 7 NORMALITAS RESIDUAL

Uji Normalitas bertujuan untuk menguji apakah dalam model regresi, variabel pengganggu atau *residual* mempunyai distribusi normal. Uji t dan F mengasumsikan nilai *residual* mengikuti distribusi normal. Jika terjadi pelanggaran asumsi ini, maka uji statistik menjadi tidak valid untuk jumlah sampel kecil. Ada dua cara mendeteksi apakah *residual* memiliki distribusi normal atau tidak, yaitu dengan analisis grafik dan uji statistik.

Analisis Grafik

Lakukan regresi dengan variabel dependen ROA dan variabel independen CAR, NPL, ROE, OCOR dan LDR. Lanjutkan dengan menekan tombol *Plots* hingga tampak di layar kotak dialog *Linear Regression: Plots*. Aktifkan *Histogram* dan *Normal probability plot* pada bagian *Standardized Residual Plots*. Abaikan yang lain, tekan *Continue* lalu OK.

Histogram

Normal P-P Plot of Regression Standardized Residual

Pada prinsipnya normalitas dapat dideteksi dengan melihat penyebaran data / titik pada sumcu diagonal dari grafik atau dengan melihat histogram dari residualnya. Model regresi dikatakan memenuhi asumsi normalitas apabila data menyebar di sekitar garis diagonal atau grafik histogramnya.

Dengan melihat tampilan grafik histogram yang agak menceng ke kiri dapat disimpulkan bahwa grafik histogram memberikan pola distribusi yang tidak normal. Sedangkan pada grafik normal plot terlihat titik-titik menyebar jauh di sekitar garis diagonal, serta penyebarannya tidak mengikuti arah garis diagonal. Kedua grafik di atas menunjukkan bahwa model regresi tidak layak dipakai karena tidak memenuhi asumsi normalitas.

Namun demikian uji normalitas residual dengan grafik dapat menyesatkan kalau tidak hati-hati. Secara visual tampak normal, padahal secara statistik bisa sebaliknya. Oleh karena, di samping menggunakan uji grafik, sebaiknya dilengkapi dengan uji statistik. Terutama dalam kasus ini, seperti terlihat tidak normal, karena datanya sangat sedikit (n=36).

Uji Kolmogorov Smirnov (KS)

Langkah Analisis

1. Dari menu utama SPSS pilih menu Analyze \rightarrow Nonparametric Tests \rightarrow 1-Sample K-S.

141	4/5	Opicipiter MARKA											
1	4400 C		121										
111	PERCAL 1	A Tem	* RD0	0006	LDR	100.1	Ainth						
	1.00	Cegarrilean	1 3	4.29 82	09. 102.67	1.60321	D.68						
2	2.00	Geranal Linear Model	* i i	1.15 .71	102 90.51	2.57314	0.57						
3	100	Generalgia LiAve resets:	1 4	6.21 70	(7) 00.12	-0.52734	0.53						
4	4.00	MyATMAR.	1 3	0.14 78	58 104.41	0.62440	0.62						
5	5.00	Orelay	*	572 B4	152 97.06	0.60133	0.98						
	8.00	Terrareter.	* 3	0.22 87	34. 92.96	4.40728	0.41						
3	7.00	1.gptear	1	4.57 70	05 102.94	0.0000	0.04						
10	8.00	New Westmann	1 3	128	175 99.16	4.22108	0.20	1					
	9.00	Chevely	· 3	7.49 76	76 9677	4086	0.05						
10	10.00	Deter Restantions	* s	2.13 18	0. 98.44	0.2439	0.24	4					
11	11.00	Ser	•	1.77	IT. 105.78	0.54391	0.94	â					
12	1200	Management of Facility	* X5 g+6a	det	91.78	-0.05218	D DE						
10.1	13.00	Text barms	A COMPANY	5	(8.42	0.31483	0.21	· · · · · · · · · · · · · · · · · · ·					
14	14.00	Dered	· mitter		90.26	ii: 10369	0.01						
16	16.00	Billinging Value Available	A Litere	ens.	90.27	0.06185	0.06						
1E	18.00	MARK This may	* # 114es	recent Senates .	92.93	1.15410	1.18						
0	17.00	Consectioner	1. 10 12 10 10	international.	20.68	0.99788	0.79						
- 96	10.00	gaadly toolers	F A Inter	clayfel.	97.15	10477	0.05	3					
- 99-11	19.08	E MOR TANK	III B Selec	ed Enterters	98.65	1.40229	0.66						

 Setelah muncul kotak dialog One-Sample Kolmogorov-Smirnov Test. Kemudian pada kotak Test Variable List isikan variabel Unstandardized Residual (RES_1). Selanjutnya, pada kotak Test Distribution aktifkan Normal. Abaikan yang lainnya, lalu klik OK.

One-Sample Kolmogorov-Smir	nov Test	×		
 Sample Identity [SAMPID] Capital Assets Ratio [C Non Performing Loan [N Return On Assets [ROA] Return On Equity [ROE] Cost Efficiency [OCOR] Loan to Deposit Ratio [L AbsUi 	Test Variable List:	Exact Options		
Test Distribution				
✓ Normal □ Uniform				
Poisson <u>E</u> xponential				
OK <u>P</u> aste	Reset Cancel H	lelp		

3. Pada bagian SPSS *Output Viewer* akan muncul tampilan sebagai berikut:

One Cam	nla Kalmagara	w Emirnou Toot
Une-Sam	pie noimogoi (w-smirnov rest

		Unstandardiz ed Residual
N		36
Normal Parameters ^a	Mean	.0000000.
	Std. Deviation	.53602605
Most Extreme Differences	Absolute	.121
	imeters ^a Mean Std. Deviation e Differences Absolute Positive Negative Smirnov Z (2-tailed)	.121
	Negative	061
Kolmogorov-Smirnov Z		.724
Asymp. Sig. (2-tailed)		.670

a. Test distribution is Normal.

Besarnya nilai Kolmogorov-Smirnov adalah 0,724 dengan tingkat signifikansi jauh di atas 0,05, yaitu 0,670. Dengan kata lain bahwa nilai KS tidak signifikan, berarti residual terdistribusi secara normal.

LATIHAN

Berikut ini adalah data sebuah penelitian yang ingin menguji apakah Kompleksitas Tugas dan Aset Klien mempengaruhi Fee Audit.

- 1. Dengan menggunakan data berikut ini lakukan / tentukan dan interpretasikan hasil dari:
 - a. Uji Asumsi Klasik:
 - i. Uji Multikolinieritas dengan menggunakan nilai VIF & Tolerance.
 - ii. Uji Heteroskedastisitas baik dengan metode grafik maupun statistik.
 - iii. Uji Normalitas baik dengan metode grafik maupun statistik.
 - b. Tentukan koefisien determinasi.
 - c. Koefisien determinasi.
 - d. Uji signifikansi simultan.
 - e. Uji signifikansi parameter individual.
- 2. Jelaskan mengapa tidak perlu dilakukan pengujian untuk autokorelasi!

No.	Kompleksitas	Aset	Fee
	Tugas	Klien	Audit
1.	10.70	47.65	144.00
2.	14.00	63.13	215.00
3.	9.00	58.76	105.00
4.	8.00	34.88	69.00
5.	10.00	55.53	134.00
6.	10.50	43.14	129.00
7.	16.00	54.86	155.00
8.	15.00	44.14	99.00
9.	6.50	17.46	38.50
10.	5.00	21.04	36.50
11.	25.00	109.38	260.00
12.	10.40	17.67	54.00

13.	7.40	16.41	39.00
14.	5.40	12.02	29.50
15.	15.40	49.48	109.00
16.	12.40	48.74	89.50
17.	6.00	23.21	42.00
18.	9.00	28.64	65.00
19.	9.00	44.95	115.00
20.	12.40	23.77	49.50
21.	7.50	20.21	36.50
22.	14.00	32.62	109.00
23.	7.00	17.84	45.00
24.	9.00	22.82	58.00
25.	12.00	29.48	89.00
26.	5.50	15.61	30.00
27.	6.00	13.25	31.00
28.	12.00	45.78	119.00
29.	5.50	26.53	22.00
30.	14.20	37.11	109.00
31.	11.00	45.12	99.00
32.	16.00	26.09	99.00
33.	13.50	68.63	179.00
34.	11.10	33.71	99.00
35.	9.80	44.45	89.00
36.	10.00	23.74	75.00
37.	13.00	86.42	199.00
38.	13.00	39.71	93.00
39.	11.70	26.52	65.00
40.	12.30	33.89	74.00
41.	19.50	64.30	165.00
42.	15.20	22.55	99.00
43.	10.00	31.86	43.50
44.	11.00	53.18	94.00
45.	17.80	74.48	189.00
46.	11.50	34.16	75.00
47.	12.70	31.46	59.50
48.	8.00	21.34	42.00
49.	7.50	20.83	23.00

50.	9.00	20.59	52.50
51.	14.00	33.70	99.00
52.	12.40	32.90	89.00
53.	8.80	27.76	65.00
54.	8.50	30.20	54.50
55.	6.00	20.85	24.50
56.	11.00	26.25	52.00
57.	11.10	21.87	62.50
58.	14.50	23.88	89.00
59.	5.00	16.66	21.50

REFERENSI

- Ghozali, I. (2006). *Aplikasi Analisis Multivariate Dengan Program SPSS.* Semarang: Badan Penerbit Universitas Diponegoro.
- Ghozali, I. (2009). Ekonometrika, teori, Konsep dan Aplikasi dengan SPSS. Semarang: Badan Penerbit Universitas Diponegoro.

LAMPIRAN TABEL DURBIN WATSON 5%

	. *	-1		- 8	. *	- 3	×	-+		-5	. *	- 6		- 7		- 8		. 9		10
	a.	$d_{\rm e}$	ä.	d,	4	d,	4,	de	4	d,	4	d,	4	d _e	4	a,	4	q_{c}	4	6 ,1
6	0.610	1.400	-	-	-	-	-	-	1.000	-	-	-	-	-	-	-	-		-	_
7	0.700	1.358	0.467	1.000	-	-	-		-	_	-	-	-	-	-	-	-		-	-
	0.763	1.082	0.558	1.777	0.368	2.267	-	-	-		-	-	-	-	-	-	-	_	-	-
	0.824	1.330	0.629	1.699	0,455	2,520	0.296	2.588		-	-	-		-	-	-	-	-	-	-
10	0.879	1.320	0.697	1.845	0.525	2,016	0.370	2.414	0.243	2.622	-	-	-	-	-	-	-	-	-	-
-11	0.827	1.024	0.658	1.604	0.585	1.808	0.444	2,289	0.398	2.645	0.203	3.005	-	-	-	-		-	-	-
12	0.971	1.831	0.812	1.579	0.658	1.864	0.812	2.172	9529	2.508	0.298	2.832	0.171	3.148		-			-	-
13	1.010	1.340	0.001	1,567	0.715	1.816	0,574	2.004	0.645	2,390	0.328	2.682	0.230	2.885	0.147	3.966		-	- 100	-
14	1.045	1.350	0.905	1.551	0.767	1.779	0.652	2.030	0.505	2,296	0.389	2.572	0.298	2.648	0.200	3.111	Q.127	3,360	-	-
15	1,077	1.361	0.946	1.543	0.814	1.750	0.685	1.977	0.562	2 225	0.447	2.472	9.343	2.727	0.251	2.879	0.175	3,216	6,919	3.438
16	1,106	1.371	0.982	1.539	0.857	1.728	0,754	1,935	0.615	2.157	0.502	2.385	0.398	2,624	0.304	2.860	0.222	3.090	0.155	1.304
17	1.133	1.361	1.015	1.536	0.697	1.710	0.779	1,900	0.664	2.164	0.554	2,218	0.491	2.507	0.356	2.757	0.272	2.975	5.198	3.184
18	1.156	1.391	1.046	1.535	0.903	1,696	0.820	1,872	0.790	2.060	0.003	2.267	0.503	3.401	6.407	2.667	0.301	2.873	0.244	3.073
19	1.180	1.401	1.074	1.536	0.967	1,885	0.859	1,048	0.762	2.023	0.649	2.204	0.548	2.208	0.456	3.589	0.369	2.785	0.790	2.974
20	1.201	1.411	1,100	1.897	D.1494	1.676	0.894	1.828	0.782	1.001	0.682	2,162	0.595	2.309	0.502	2.821	0.416	2.704	0.336	2.885
21	1.321	1,400	1.125	1.538	1,028	1.889	0.827	1,812	0.829	1.004	0.732	2.524	0.837	2,290	0.547	2.460	0.461	2.633	0.360	2,806
22	1,239	1.429	1.147	1.541	1.053	1,664	0.968	1.797	0.863	1.040	0.768	2.080	0.877	2.246	0.589	2.407	0.504	2.871	0.434	2.734
53	1.267	1.457	1.168	1.543	1,078	1/060	0.986	1.785	0.095	1.820	11.004	2.061	0.755	2.208	10.0006	2.360	0.546	2.514	0.485	2.670
24	1,275	1.645	1.168	1.5#6	1.301	1,556	1.013	1.775	0.92%	1.002	0.837	2.035	8.751	2,174	0.666	2.318	0.584	2.464	0.556	2.613
25	1,258	1,454	1.208	1.590	1.123	1,054	1,008	1,767	0.955	1.000	0.008	2.012	0.794	2.144	0.702	2.280	0.621	2.418	0.544	2.560
26	1,302	1.461	1.224	1.663	1.143	1,652	1.062	1,750	0.979	1.873	0.897	1.892	8.816	2.117	8.735	2.245	8.857	2.378	0.581	2.513
27	1.316	1.459	1.240	1.556	1.162	1.851	1,064	1.753	1.054	1.061	0.925	1.874	0.945	2.093	0.767	2.216	0,691	2.342	0.616	2,479
28	1.328	1.476	1,295	1.560	1.181	1,650	1,104	1.747	1.028	1.450	0.951	1.058	0.874	2,075	0.798	2.100	0.729	2.309	0.650	2.431
29	1.341	1.482	1.270	1.565	3.188	1,850	1,124	1.743	1.090	1.841	0.075	1.844	0.000	2.052	0.60%	2.104	0.783	2,276	0.662	2,096
- 30	1.852	1.489	1.284	1.997	1,214	1,860	1,540	1.730	1.071	1.833	0.098	1.901	0.926	2.004	0.854	3.141	0.762	3,251	0.712	1.363
21	1.963	1.496	1.297	1.570	1,209	1.650	1,160	1,756	1.090	1.825	1.020	1.820	0.850	2.018	0.879	2.120	0.810	1.2.26	0.741	1.333
30	1.375	1.500	1.309	1.574	1,244	1,650	1,177	1.732	1.109	1.010	1.041	1.809	0.972	2,004	0.904	2,902	0.806	2,200	0.769	2.306
33	1.383	1,908	1.321	1.577	1.258	1,681	1,190	1.790	1.127	1.813	1.001	1.800	0.994	1.991	0.907	2.005	0.801	2.181	0.795	2.281
- 24	1.390	1.514	1.995	1.580	1,371	1,452	1.208	1.728	1,144	1.008	1.090	1.891	1.018	1.879	0.890	2.069	0.885	2.162	0.821	3.257
- 28	1.402	1.519	1.343	1.584	1,280	1.653	1.322	1.726	1.160	1.803	1.097	1.084	1.034	1.967	0.971	2.064	0.908	2.144	0.545	2.296
34	1.411	1.525	1.394	1.567	1.299	1.654	1,296	1.736	1,175	1.789	1.114	1.877	1.053	1.857	0.961	2.041	0.930	2.127	0.668	2.2%
ar	1,419	1.530	1.364	1.599	1.307	1,665	1,248	1.728	1.190	1.795	1.131	1.870	1.071	1.948	1,211	2.029	0.951	2.112	0.691	2.186
- 20	1.427	1.535	1.978	1.504	1.318	1.050	1,281	1.722	1.204	1.767	1,146	1.864	1.008	1.909	1.929	2.017	0.970	2.098	0.912	2.180
- 24	1.435	1.540	1,382	1.207	1.000	1,008	1.279	1.722	1,218	1.798	1.101	1.859	1.104	1.902	1.047	2.007	0.990	2.065	0.002	2.184
	1,442	1.544	1.001	1.800	1.000	1,050	1,265	1.721	1,230	5.788	1.175	1,804	1.120	1.804	1.064	1.000	1.008	2.072	0.892	2.149
	1.475	1.000	1.400	1.615	1.000	1,000	1,000	1.120	1.297	1.778	1.238	1.035	1.189	1,890	1.139	1.950	1.009	3.022	1.008	2.085
80	1.900	1,080	1.402	1.608	1,401	1,674	1,378	1.721	1,008	1.771	1.201	1.802	1.240	1.875	1,201	1,000	1.156	1.900	1.110	2.044
- 00	1.548	1.001	1.400	1.041	1.402	1.001	1.414	1.724	1.074	1.768	1.304	1,010	1,294	1,801	1,253	1.809	1.212	1.958	1.170	2,010
- 80	1.049	1.018	1.514	1.652	1,480	1,000	1.444	1.727	1,408	1.767	1.372	1.008	1.335	1.850	1.290	1,884	1.200	1.000	1.332	1.964
- 60	1.967	1.809	1,508	1.002	1.500	1.040	1,471	1.731	1,630	1.767	1.404	1.802	1.370	1,843	1.336	1.80	1.301	1.823	1,200	1.364
70	1.580	1.041	1.554	1.072	1.040	1.700	1,494	1.736	1.464	1.768	1,430	1.802	1.401	1,837	1.369	1.473	1,307	1.010	1.305	1.948
12	1,000	1.052	1.071	1.000	1.963	1.709	1,015	1.739	1.467	1.370	1.458	1.801	1,428	1.894	1.300	1.867	1.369	1,801	1.539	1.635
-	1,051	1.052	1.005	1.005	1.560	1.715	1,004	1.743	1.007	1.772	1.480	1.805	1,453	1.801	1.425	1.001	1.3607	1.893	1.309	1.825
-	1.625	C.MPT	1.000	1.000	1,879	1,787	1,000	1.747	1.965	1.778	1,890	1.801	1.474	1.809	1,448	1.857	1,422	1.006	1.396	1.915
100	1.000	1.079	1,812	1.753	1.000	1.725	1.005	1,751	1.042	1.775	1.518	1.801	1.404	1.827	1.850	1.854	1.445	1.801	1,420	1.908
90	1.045	1.007	1.623	1,708	1.002	1.7.84	1.079	1.750	1.007	1.00	1.545	1,862	1.512	1,807	1,400	1.002	1.465	1.877	1.842	1,000
100	1.004	1.004	1.004	1.710	1/013	1,720	1,042	1.758	1.573	4.780	1.590	1,803	1.528	1.825	1.506	1.850	1.484	1,878	1.462	1.008
100	1.720	1.746	1.706	1.700	1.093	4.778	1879	1.788	1.095	1.002	1.801	1,817	1.637	1.832	1.822	1.847	1.808	1.862	1.584	1.877
200	3.708	-Greek	0.746	1.700	1,798	1.799	1.728	1,010	1.718	1.620	4.307	1.801	1,667	1.845	1.666	1.852	1.675	1.063	1.668	1.874

DURBIN-WATSON & STATISTIC: SIGNIFICANCE POINTS OF & AND & AT 0.05 LEVEL OF SIGNIFICANCE

© Semarang University Press